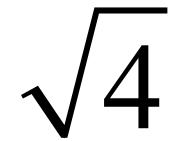


Do Now

Find the product.

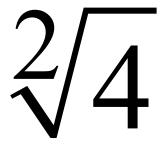
1. 12 × 12	2 . 9 × 9	3. 18 × 18
4. 1.6 × 1.6	5. 2.5 × 2.5	6. $\frac{2}{3} \times \frac{2}{3}$

Do Now

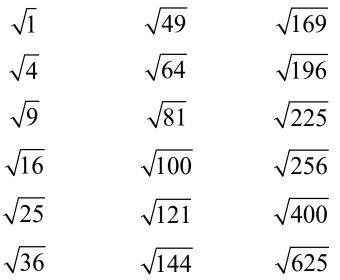

Perfect Squares

Perieci	Squares that y	ou snouia m
1 ²	7^2	13 ²
2^{2}	8 ²	14 ²
3 ²	9 ²	15 ²
4 ²	10 ²	16 ²
5 ²	11 ²	20^{2}
6 ²	12^{2}	25 ²

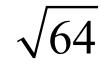
Perfect Squares that you should memorize

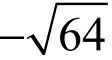

Roots Review

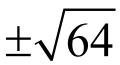
Parts of a Root


Roots Review

Parts of a Root




Roots Review

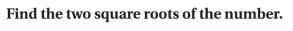

Perfect Roots that you should memorize

<u>Lesson</u>

Positive and...

Find the two square roots of 49.

Finding Square Roots


Find the square root(s).

a. $\sqrt{25}$

b. $-\sqrt{\frac{9}{16}}$

c. $\pm\sqrt{2.25}$

On Your Own

1. 36 2. 100 3. 12

5. $\pm \sqrt{\frac{4}{25}}$

Find the square root(s).

4.
$$-\sqrt{1}$$

Special property of roots

Special property of roots

 $\left(\sqrt{11}\right)^2$

Operations with Square Roots

Evaluate each expression.

a. $5\sqrt{36} + 7 =$

b.
$$\frac{1}{4} + \sqrt{\frac{18}{2}}$$

Operations with Square Roots

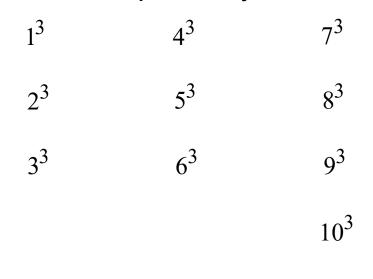
Evaluate each expression.

c.
$$(\sqrt{81})^2 - 5$$

On Your Own

Evaluate each expression. a. $2\sqrt{144} - 30$

b.
$$\sqrt{\frac{36}{4}} + \frac{1}{6}$$


On Your Own

c.
$$49 - (\sqrt{49})^2$$

7.2 FINDING CUBE ROOTS

Perfect Cubes

Perfect Squares that you should know

Cube Roots

Perfect Cube Roots that you should know

3√1	$\sqrt[3]{64}$	3√343
3√8	∛125	∛512
∛27	∛216	∛729
		3√1000

Do Now

Find the edge length of the cube.

1. Volume = 64,000 ft³ **2.** Volume =
$$\frac{1}{216}$$
 ft³

Finding Cube Roots

Find each cube root.

a. $\sqrt[3]{8}$

b. $\sqrt[3]{-27}$

c. $\sqrt[3]{\frac{1}{64}}$

Evaluating with Cube Roots

Evaluate each expression.

a.
$$2\sqrt[3]{-216} - 3$$

b. $(\sqrt[3]{125})^3 + 21$

On Your Own

Find the cube root. 1. $\sqrt[3]{1}$ **2.** $\sqrt[3]{-343}$

3.
$$\sqrt[3]{-\frac{27}{1000}}$$

Evaluate the expression.

4. $18 - 4\sqrt[3]{8}$ **5.** $(\sqrt[3]{-64})^3 + 43$ **6.** $5\sqrt[3]{512} - 19$

Evaluating with Cube Roots

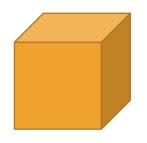
Evaluate
$$\frac{x}{4} + \sqrt[3]{\frac{x}{3}}$$
 when $x = 192$.

On Your Own

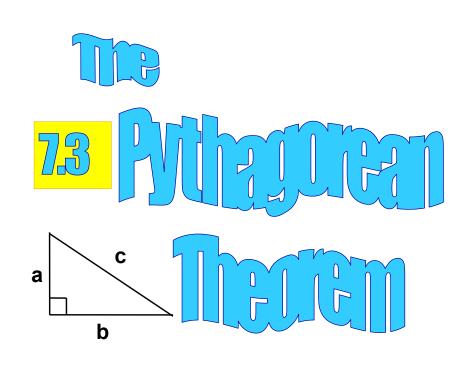
Evaluate the expression for the given value of the variable.

7. $\sqrt[3]{8y} + y, y = 64$

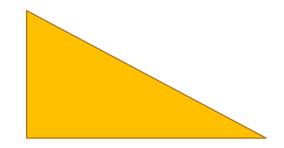
8. $2b - \sqrt[3]{9b}, b = -3$


Critical Thinking...

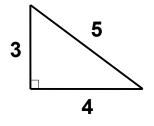
Find the surface area of the baseball display case.


With Your Partner

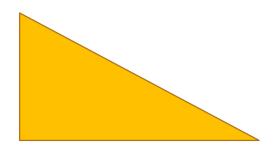
9. The volume of a music box that is shaped like a cube is 512 cubic centimeters. Find the surface area of the music box.



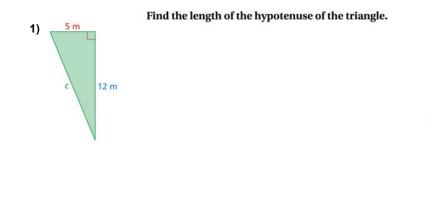
Did You Understand?


Explain the difference between $\sqrt{64}$ and $\sqrt[3]{64}.$

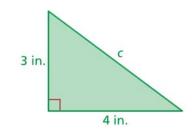
Parts of a Right Triangle



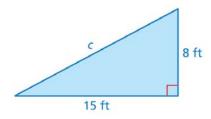
About 2,500 years ago, a Greek mathematician named Pythagorus discovered a special relationship between the sides of right triangles.


Pythagorus realized that if you have a right triangle, and you square the lengths of the two sides that make up the right angle, and add them together, you get the same number you would get by squaring the other side.

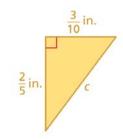
Pythagorean Theorem



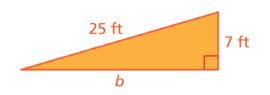
Pythagorean Theorem


Pythagorean Theorem

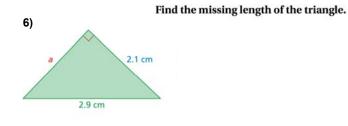
2) Find the length of the hypotenuse of the triangle.


On Your Own

3) Find the length of the hypotenuse of the triangle.


On Your Own

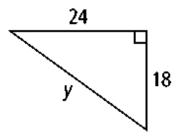
4) Find the length of the hypotenuse of the triangle.



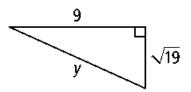
Pythagorean Theorem

5) Find the missing length of the triangle.

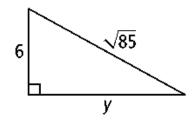
Pythagorean Theorem



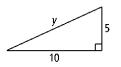
7) You are playing capture the flag. You are 50 yards north and 20 yards east of your team's base. The other team's base is 80 yards north and 60 yards east of your base. How far are you from the other team's base? 8) You and your cousin are planning to go to an amusement park. You live 36 miles south of the amusement park and 15 miles west of your cousin. How far away from the amusement park does your cousin live?


Practice

1) Find the missing length.


Practice

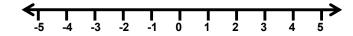
2) Find the missing length.


Practice

3) Find the missing length.

Practice

4) Find the missing length. Approximate your answer to the nearest tenth.



Kinds of Numbers

Natural Numbers

Whole Numbers

Integers

Rational Number

Rational Numbers

- You CAN change the number into a fraction
- It is a terminating decimal
- It is a nonterminating AND repeating decimal
- You CAN find the PERFECT square root of it

 Rational
 Irrational

Organize the follow $\frac{5}{12}$ -12 -4.67	6	$-\frac{17}{31}$	4.581	23	π	-3	$\sqrt{25}$	0.37	$\frac{1}{2}$	$\sqrt{10}$	0.31	2
0.101001000	0.75	-13	$\frac{9}{5}$	-√123	3.01	73	5.7	4.625	-62	$3\frac{5}{7}$	0	√ 81
Natural Numbers						/hole N	lumbe	rs				
i i i i i i i i i i i i i i i i i i i					1							
Integers						ational	Num					
Integers						ationa	Numt	pers				
Integers						ationa	l Numt	pers				
Integers						ationa	Numt	pers				
Integers					R	ationa	Numt	oers				

$\frac{5}{12}$ -12	-4.67	6	$-\frac{17}{31}$	4.581	23	π	-3	$\sqrt{25}$	0.37	$\frac{1}{2}$	$\sqrt{10}$	0.31	2
0.10100100	00	0.75	-13	$\frac{9}{5}$	-√123	3.01	73	5.7	4.625	-62	$3\frac{5}{7}$	0	√ 81
Irrational Nu	umbers	5]							

Example 1

Identify all sets to which each of the following numbers belong:

a) $\frac{1}{9}$

b) 0

c) -18

Example 2

Terminating Decimal - When the division stops.

<u>Repeating Decimal</u> - When the last digit of the division repeats over and over, we use repeating decimal bars...

Both terminating and repeating decimals are <u>RATIONAL</u>

Write the decimal as a fraction. Simplify the fraction if possible.

a) 0.02 b) 0.105 c) -2.048

Example 3

If a decimal does not terminate and it doesn't repeat, it is <u>IRRATIONAL</u>.

Which is NOT a rational number?

1

a)
$$-\sqrt{32.8}$$
 c) $1\frac{1}{4}$

b)
$$-0.48$$
 d) $-\frac{2}{3}$

On Your Own

Classify the real number.

1. 0.121221222... **2.** $-\sqrt{196}$

3. $\sqrt[3]{2}$

Example 5

Order these numbers from least to greatest:

$$-\frac{1}{2}, \frac{3}{4}, -0.05, 0.83$$

Approximating Square Roots

Example 1

Estimate $\sqrt{71}$ to the nearest (a) integer and (b) tenth.

Approximating Square Roots

Example 2

Estimate $\sqrt{23}$ to the nearest (a) integer and (b) tenth.

Approximating Square Roots

Example 3

4. $\sqrt{8}$	5. $-\sqrt{13}$	6. $-\sqrt{24}$	7. √110

Approximating Square Roots

Example 4

Which is greater, $\sqrt{5}$ or $2\frac{2}{3}$?

Approximating Square Roots

Example 5

Which is greater, $\sqrt{0.49}$ or 0.71?

7.5
CONVERSE OF THE
PYTHAGOREAN
THEOREM

, then
riangle, then a²+b²=c² works.
, then

The Converse of the Pythagorean Theorem

In a triangle if $a^2 + b^2 = c^2$ works, then the triangle is

Determine if the triangle with the given side lengths is a right triangle.

1) 11,18,21

a _____

2) 5,6, $\sqrt{11}$

Tell whether each triangle is a right triangle.

Determine if the triangle with the given side lengths is a right triangle.

c. Triangle with sides 9, 7, 10

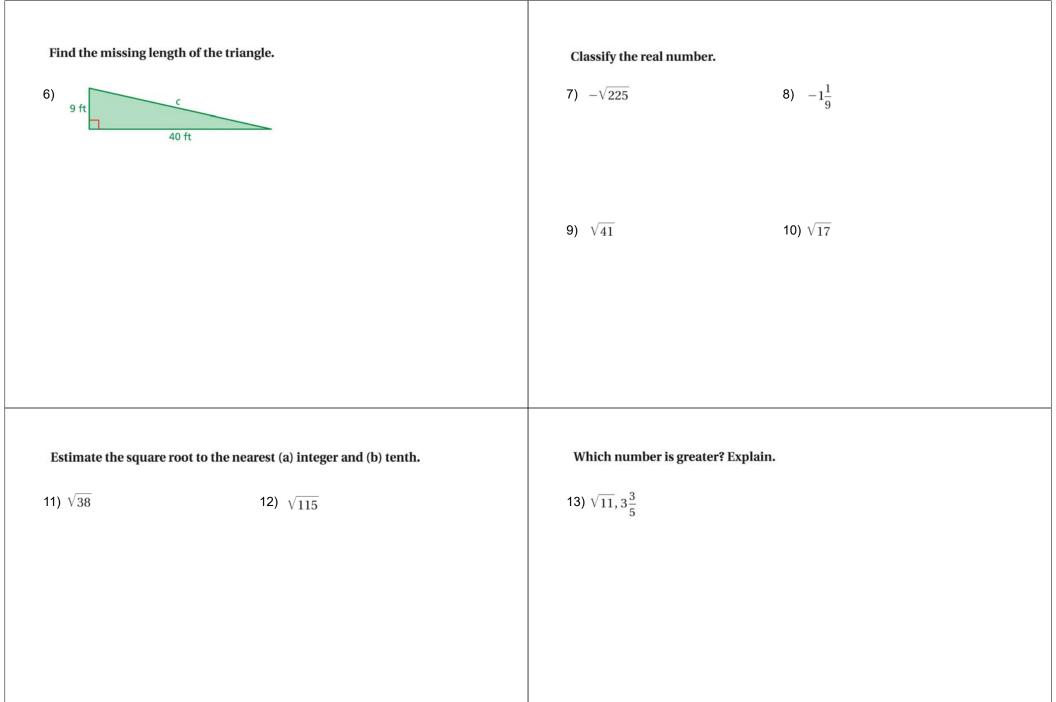
d. Triangle with sides 10, 6, 13

e. Triangle with sides 13, 5, 12

Find the square root(s).

1) $-\sqrt{4}$

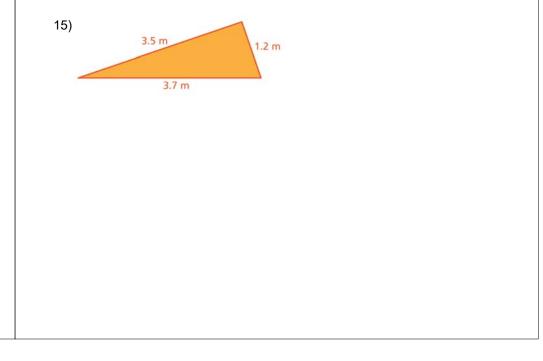
2) $\sqrt{\frac{16}{25}}$


Evaluate the expression.

3) $3\sqrt{49} + 5$

4) $10 - 4\sqrt{16}$

Evaluate the expression.


5) $\frac{1}{4} + \sqrt{\frac{100}{4}}$

Tell whether the triangle with the given side lengths is a right triangle.

Tell whether the triangle with the given side lengths is a right triangle.

